Maths

Reg.No. : | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

FOR ANSWERS WHATSAPP - 8056206308
Time : 01:30:00 Hrs

1) If $f(X)=X+7$ and $g(X)=X-7, X \in R$, find fog(7).?
2) If the binary operation * on the set of integers Z is defined by $a^{*} b=a+3 b^{2}$ then find the value of $2^{*} 4$.
3) Let * be a binary operation on N given by a*b=HCF(a,b), $a, b \in N$. Write the value of $22^{*} 4$.
4) If the binary operation * defined on Q is defined as $\mathrm{a} * \mathrm{~b}=2 \mathrm{a}+\mathrm{b}-\mathrm{ab}$, for all $a, b \in Q$, find the value of $3^{*} 4$.
5) If $\mathrm{f}: R \rightarrow R$ be defined by $f(X)=\left(3-X^{3}\right)^{\frac{1}{3}}$ then find fof (X).
6) If f is an invertible function defined as $\mathrm{f}(\mathrm{X})=\frac{3 X-4}{5}$, write $\mathrm{f}^{-1}(\mathrm{X})$.
7) If $\mathrm{f}: R \rightarrow R$ and $\mathrm{g}: R \rightarrow R$ are given by $\mathrm{f}(\mathrm{X})=\sin \mathrm{x}$ and $\mathrm{g}(\mathrm{x})=5 \mathrm{x}^{2}$ find $\operatorname{gof}(\mathrm{x})$.
8) If $f(x)=27 x^{3}$ and $g(x)=x^{1 / 3}$ find $g \circ f(x)$.
9) State the reason for the relation R in the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)$,$\} not to be transitive.$
10) Let $A=\{1,2,3\} B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. State whether f is one-one or not.
11) Write fog, if $\mathrm{f}: R \rightarrow R$ and $\mathrm{g}: R \rightarrow R$ are given by: $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ and $\mathrm{g}(\mathrm{x})=|5 \mathrm{x}-2|$
12) Write fog, if $\mathrm{f}: R \rightarrow R$ and $\mathrm{g}: R \rightarrow R$ are given by $\mathrm{f}(\mathrm{x})=8 \mathrm{x}^{2}$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}^{1 / 3}$
13) The binary operation $*: R \times R \rightarrow R$ is defined as $\mathrm{a} * \mathrm{~b}=2 \mathrm{a}+\mathrm{b}$. Find ($2 * 3$) ${ }^{*} 4$.
14) If the binary operation * on the set Z of integers is defined by $a * b=a+b-5$, then write the identiy element for the operation * in Z.
15) Let f and g be two real functions defined as $f(x)=2 x-3 ; g(x)=\frac{3+x}{2}$. Find fog and gof. Can you say one is inverse of the other?
16) Prove that $\mathrm{f}: R \rightarrow R$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+1$ is one-one function.
17) Let $\mathrm{f}: R \rightarrow R$ is defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$. Is f one-one?
18) Let $\mathrm{f}: R \rightarrow R$ is defined by $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$. Is function f onto? Give reasons.
19) Let R be a relation in the set of natural numbers N defined by $R=\{(a, b) \in N X N ; a$
20) Let A be any non-empty set and $\mathrm{P}(\mathrm{A})$ be the power set of A . A relation R defined on $\mathrm{P}(\mathrm{A})$ by $X \quad R \quad Y \Leftrightarrow X \quad \cap \quad Y=X, X, Y \in P(A)$. Examine whether R is symmetric.
21) Let $f: N \rightarrow N$ be defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}$. Show that f is not onto function.
22) Let * be a binary operation on N given by $a * b=\operatorname{lcm}(a, b), a, b \in N$. Find $\left(2^{*} 3\right)^{*} 6$.
23) * is a binary operation defined on the set of natural numbers N, defined by $a^{*} b=a^{b}$ Find (i) $2^{*} 3$ (ii) $3^{*} 2$
24) * is a binary operation defined on Q given by $a * b=a+a b, a, b \in Q$. Is * commutative?
25) An operation * on Z^{+}is defined $a s a^{*} b=a-b$. Is the operation * a binary operation? Justify your answer.
26) Find if the binary operation * given by $\mathrm{a} * \mathrm{~b}=\frac{a+b}{2}$ in the set of real numbers, associative.
27) Show that the relation $R:\{1,2,3\} \rightarrow\{1,2,3\}$ given by $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ is reflexive but neither symmetric nor transitive.
28) Prove that the greatest integer function $f: R \rightarrow R$, given by $f(x)=[x]$ is neither one-one nor onto.
29) Show that the absolute value function $: R \rightarrow R$ given by $f(x)=|x|$ is neither one-one nor onto.
30) Let $A=\{1,2,3\} B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. Show that f is one-one.
31) Let $f:\{1,3,4\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,3\}$ be given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$. Write down gof.
32) Show that division is not a binary operation on N.
33) Let the function $f: R \rightarrow R$ to be defined by $f(x)=\cos x \forall x \in R$. Show that is neither one-one nor onto.
34) For the set $A=\{1,2,3\}$ define a relation R in the set A is follows: $R=\{(1,1) .(2,2),(3,3),(1,3)\}$. Write the ordered pairs to be added to R to make it the smallest equivalence relation.
35) If $R=[(x, y): x+2 y=8]$ is a relation on N, write the range of R
36) State the reason why the Relation $\mathrm{R}=\left[(\mathrm{a}, \mathrm{b}): a \leq b^{2}\right.$ on the set R of the real numbers is not reflexive
37) If $f: R \rightarrow R \quad$ defined as $f(x)=\frac{2 x-7}{4}$ is an invertible function write $f^{-1}(x)$
38) Let $f: R \rightarrow R$ be defined by $f(x)=3 x^{2}-5$ and $g: R \rightarrow R$ be defined by $g(x)=\frac{x}{x^{2}+1}$ find gof
39) Letf: $\{I, 3,4\} \sim\{1,2,5\}$ and $g:\{1,2,5\} \sim\{1,3\}$ given byf $=\{(I, 2)(3,5)(4, I)\}$ and $g=\{(I, 3),(2,3),(5,1)\}$ Write down gof
40) Let ${ }^{*}: R \times R \rightarrow R$ given by $(\mathrm{a}, \mathrm{b}) \rightarrow a+4 b^{2}$ is a binary operation .Computer $(-5)\left(2^{*} 0\right)$
41) Let * be a binary operation, on the set of all non-zero real numbers given by $\mathrm{a} * \mathrm{~b}=\frac{a b}{5}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in R-\{0\}$ Find the value of x, given that $2^{*}\left(x^{*} 5\right)=10$
42) State the reason for the following Binary operation * defined on the set Z of integers to be not commutative $a^{*} b=a b^{2}$
43) If the binary operation * on the set of integers Z is defined by $a^{*} b=a+3 b^{2}$ then find the value of $8^{*} 3$
44) If * is a binary operation on the set R of real numbers defined by $a^{*} b=a+b-2$ then find the identity element for the binary operation *.
45) Let * be a binary operation on N given by a * $b=\operatorname{LCM}(a, b)$ for all $a, b \in N$. Find $5^{*} 7$
46) Let * be a binary operation. On the set of all non-zero real numbers, given by $\mathrm{a} * \mathrm{~b}=\frac{a b}{5}$. For all $\mathrm{a}, \mathrm{b} \in R-[0]$. Find the value of x, given that (i) $2^{\star}\left(x^{\star} 5\right)=6$, (ii) $3\left(x^{\star} 3\right)=9$.
47) Show that the relation R in the $\operatorname{Set} A=\{I, 2,3,4,5\}$ given by $R=\{(a, b): l a-b l$ is divisible by 2$\}$ is an equivalence relation. Write all the equivalence classes of R.
48) Show that the function $\backslash\left(f: R\left[x \backslash\right.\right.$ in $\mathrm{R}: 1$ defined by $f(x)=\frac{x}{1+|x|}, x \in R$ is one-one and onto function Hence find $f^{-1}(x)$
49) Consider $f: R_{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$ Show that f is invertible find $f^{-1}(x)$ where R_{+}is the set of all nonnegative real numbers.
50) Let $\mathrm{f}: N \rightarrow N$ be a function defined as $f(x)=x^{2}+4 x+7$ show that $\mathrm{f}: N \rightarrow S$ Where S is the range of f , and f is invertible Find the inverse of f .Has interest any relation with knowledge?
51) Let $\mathrm{A}=R \times R$ and * be a binary operation on A defined by $(\mathrm{a}, \mathrm{b})^{*}(\mathrm{c}, \mathrm{d})=(\mathrm{a}+\mathrm{c}, \mathrm{b}+\mathrm{c})$ Show that * is commutative and associative. Find the identity element for * on A . Also find • the inverse of every element $(\mathrm{a}, \mathrm{b}) \in A^{*}$.
52) Show that the binary operation * on $A=R-\{-1\}$ defined $a s a * b=a+b$ for $a l l a, b, c A$ is commutative and associative on A.Also find the identity element of * in A and prove that every element of A is invertible
53) Determine whether the operation * define below on Q is binary operation or not. $a * b=a b+1$ If yes, check the commutative and the associative properties. Also check the existence of identity element and the inverse of all elements is Q .
54) Let * be a binary operation defined on $Q \times Q$ by $(a, b)^{*}(c, d)=(a c, b+a d)$. where Q is the set of rational numbers. Determine, whether * is commutative and associative. Find the identity element for * and the invertible elements of $\mathrm{Q} \times \mathrm{Q}$.
